JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 26, No. 3, August 2013

SEPARABLE REFLEXIVE BANACH SUBLATTICES OF $WeakL^1$

JEONGHEUNG KANG*

ABSTRACT. We investigate complemented Banach sublattices of the Banach envelope of $WeakL^1$. In particular, the Banach envelope of $WeakL^1$ contains a complemented Banach sublattice that is isometrically isomorphic to a separable reflexive Banach lattice.

1. Introduction

The space $WeakL^1$ was introduced in analysis when it was observed that some important operators such as the Hilbert transform and the Hardy-Littlewood maximal functions did not map L^1 into L^1 . In this view point, it became natural to investigate $WeakL^1$, the space of measurable functions f satisfying

(1.1)
$$\mu(\{x \in \Omega : |f(x)| > y\}) < \frac{c}{y}.$$

For $0 , the space <math>WeakL^p$ taken over the measure space (Ω, Σ, μ) consists of all equivalence classes of measurable functions f for which the quasinorm

(1.2)
$$q_p(f) = \sup_{a>0} a[\mu(\{x \in \Omega : |f(x)| > a\})]^{\frac{1}{p}}$$

is finite. Define q to be the Minkowski functional of the convex hull of the unit ball $\{f \in WeakL^1 : q_1(f) \leq 1\}$ of $WeakL^1$, where

$$q_1(f) = \sup_{a>0} a\mu(\{x \in \Omega : |f(x)| > a\})$$

Received April 16, 2013; Accepted July 16, 2013.

²⁰¹⁰ Mathematics Subject Classifications: Primary 46B03.

Key words and phrases: complemented Banach sublattices, Banach envelope of $WeakL^1$, reflexive Banach sublattice.

This paper was partially supported by the Hwa Rang Dae Institute in 2012.

It was shown in [2] that

(1.3)
$$q(f) = \inf_{f=f_1+\dots+f_n} \sum_{i=1}^n q_1(f_i),$$

where the infimum is taken over all finite decompositions $f = f_1 + \cdots + f_n$ of f in $WeakL^1$. So q is a seminorm on $WeakL^1$. The quotient space of $WeakL^1$ modulo the subspace of elements f satisfying q(f) = 0 is a Banach space normed by q whose dual coincides with the dual of $WeakL^1$. In [2], M. Cwikel and C. Fefferman showed that if μ is nonatomic then we get an equivalent integral-like seminorm

(1.4)
$$||f||_{wL_{\hat{1}}} = \lim_{n \to \infty} \sup_{\frac{q}{p} \ge n} \frac{1}{\ln \frac{q}{p}} \int_{\{p \le |f| \le q\}} |f| d\mu.$$

It was shown in [3] that the Banach envelope seminorm on $WeakL^1$ is exactly the same as the seminorm on $WeakL^1$ given in (1.4). Note that the seminorm on $WeakL^1$ given in (1.4) is a lattice seminorm. This is not quite obvious, but using integration by parts one can show (see [7, 1.5]) that $||f||_{wL_1}$ is exactly the same as

(1.5)
$$\lim_{n \to \infty} \sup_{\frac{q}{p} \ge n} \frac{1}{\ln \frac{q}{p}} \int_{p}^{q} \mu(\{x \in \mu : |f(x)| > t\}) dt.$$

Even though $WeakL^1$ is complete with respect to the quasinorm q_1 , it is not complete with respect to the seminorm $\|\cdot\|_{wL_1}$. This is due to M. Cwikel and C. Feffreman in [3] and also we can see this in [7, 1.4].

Now, let $\mathcal{N} = \{f \in WeakL^1 : ||f||_{wL_1} = 0\}$. Then we obtain the quotient space $WeakL^1/\mathcal{N}$. We define wL_1 as the normed envelope (and its completion as the Banach envelope) of $WeakL^1$.

It is known that $WeakL^1$ is not normable except for some trivial measure spaces (see [4]). In [4, Theorem 6], the authers showed that there exist nontrivial continuous linear functionals on $WeakL^1$. This implies that $WeakL^1$ has a nontrivial dual space. Moreover, in [7], J. Kupka and T. Peck showed that the space L^{∞} is dense in the dual space of $WeakL^1$ with weak*-topology, and that there exist lattice embeddings of L^1 , $l^1[0,1]$, l^{∞} and $c_0[0,1]$ into $wL_{\hat{1}}$. In particular, the author proved that there exists a lattice isometry $T: L^1 \to wL_{\hat{1}}$ whose range is a complemented subspace of $wL_{\hat{1}}$ (see [7, Theorem 3.9]. Later on, T. Peck and M. Talagrand [10, Theorem 1] proved that every separable order continuous Banach lattice is lattice isometric to a sublattice of $wL_{\hat{1}}$ and H. Lotz and T. Peck removed the hypothesis 'order continuity' (see [9, Theorem 2]).

In this paper, we will show that the Banach envelope $wL_{\hat{1}}$ of $WeakL^1$ contains a lot of complemented Banach sublattices. In particular, for a separable reflexive Banach lattice E, we find a lattice isometry $T: E \to wL_{\hat{1}}$ such that the range of T is a complemented sublattice of the Banach envelope $wL_{\hat{1}}$ of $WeakL^1$. So the main result of this paper is an extension of [7, Theorem 3.9]. Since for $1 , <math>L^p$ space is a reflexive Banach lattice, we can see that L^p is a complemented sublattice of $wL_{\hat{1}}$. We will give the answer for this at the end of section 2.

2. Separable complemented sublattice in wL_{1} .

To study this subject, we need some basic facts about the dual of $wL_{\hat{1}}$. We would like to change nonlinear limit superior expression (1.4) for $\|\cdot\|_{wL_{\hat{1}}}$ into a linear expression by directing the number $I_a^b(f) = \frac{1}{\ln \frac{b}{a}} \int_{\{a \le |f| \le b\}} |f| d\mu$ in some fashion. By [4, §1], we can define (1.4) as

(2.1)
$$||f||_{wL_{\hat{1}}} = \lim_{n \to \infty} (\sup\{I_a^b(f) : b/a \ge n\}).$$

For this, we introduce an ultrafilter \mathcal{U} so that the limit of the I_a^b along \mathcal{U} will determine a canonical integral-like linear functional $I_{\mathcal{U}} \in wL_1^*$.

We now construct an ultrafilter \mathcal{U} (see [7, §2.1]). For $n = 1, 2, \cdots$, let $F_n = \{(a, b) : 1 \leq a < b, \frac{b}{a} \geq n\}$ and then define $\mathcal{F} = \{F_n : n \geq 1\}$. Treating \mathcal{F} as a filter of subsets of the set $S = [1, \infty) \times [1, \infty)$, we obtain from Zorn's lemma an ultrafilter \mathcal{U} of subsets of S such that $\mathcal{F} \subset \mathcal{U}$. From now, we'll fix the ultrafilter $\mathcal{F} \subset \mathcal{U}$. The significance of the ultrafilter property lies in the fact that for every function $f \in WeakL^1$, and for every integer n sufficiently large $\{I_a^b(f) : (a, b) \in F_n\}$ is bounded, so that the limit $l = \lim_{\mathcal{U}} I_a^b(f)$

always exists (for every $\epsilon > 0$, there is a set $U \in \mathcal{U}$ such that $|I_a^b(f) - l| < \epsilon$ whenever $(a, b) \in U$).

Define the "ersatz integral" $I_{\mathcal{U}}$ for every nonnegative function $f \in wL_{\hat{1}}$ by $I_{\mathcal{U}}(f) = \lim_{\mathcal{U}} I_a^b(f)$. For more properties of $I_{\mathcal{U}}(f)$, refer to [7, 2.3 key lemma]. We define for an arbitrary function $f \in wL_{\hat{1}}$ by $I_{\mathcal{U}}(f) = I_{\mathcal{U}}(f^+) - I_{\mathcal{U}}(f^-)$. Then we have $|I_{\mathcal{U}}(f)| \leq ||f||_{wL_{\hat{1}}}$. Define $||f||_{\mathcal{U}} = I_{\mathcal{U}}(|f|)$. Note that (see [7, 2.12])

(2.2) $||f||_{\mathcal{U}} \le ||f||_{wL_{\hat{1}}}.$

For the dual of $WeakL^1$ (or wL_1), we state the theorem which is due to J. Kupka and T. Peck in [7, 2.8].

THEOREM 2.1. Define a linear operator $T_{\mathcal{U}} : L_{\infty}(\mu) \to WeakL^{1*}$ by $T_{\mathcal{U}}(m) = I_{\mathcal{U}}(mf)$ for all $m \in L_{\infty}$, and for all $f \in WeakL^1$. Then $T_{\mathcal{U}}$ constitutes an isometric order isomorphism of $L_{\infty}(\mu)$ into $WeakL^{1*}$. Moreover, the linear span of the subspaces $T_{\mathcal{U}}(L_{\infty}(\mu))$, as \mathcal{U} ranges over the collection of ultrafilter (of subset of S) which contain \mathcal{F} constitutes a norming, and hence a weak* dense, subspace of $WeakL^{1*}$.

The operator $T_{\mathcal{U}}$ of Theorem 2.1 determines an isometric order isomorphic embedding of $L_{\infty}(\mu)$ into $WeakL^{1}(\mathcal{U})^{*}$ where $WeakL^{1}(\mathcal{U}) = \{f \in WeakL^{1} : ||f||_{\mathcal{U}} < \infty\}$. Moreover, the range of this embedding is norming, and hence $weak^{*}$ dense in $WeakL^{1}(\mathcal{U})^{*}$.

Let $L(\mathcal{U}) = \{f \in WeakL^1 : ||f||_{wL_1} = ||f||_{\mathcal{U}}\}$. Then $L(\mathcal{U})$ is a closed subset of wL_1 (see [6]) and if f is a $\frac{1}{x}$ -like function, then $||f||_{wL_1} = ||f||_{\mathcal{U}} = I_{\mathcal{U}}(f)$.

LEMMA 2.2. If $\phi \neq 0$ is a linear functional on $WeakL^{1}(\mathcal{U})$, then ϕ is a linear functional on wL_{1} with $\|\phi\| \neq 0$.

Proof. Let $\phi \neq 0$ be a linear functional on $WeakL^{1}(\mathcal{U})$. Then for any $f \in wL_{\hat{1}}$ with $||f||_{\mathcal{U}} > 0$ (since $f \in wL_{\hat{1}}$ is also regarded as $f \in WeakL^{1}(\mathcal{U})$).

$$0 < |\phi(f)| \le \|\phi\| \|f\|_{\mathcal{U}}$$

$$\le \|\phi\| \|f\|_{wL_{\hat{1}}} \quad \text{by (2.2).}$$

550

Hence, $\|\phi\| \neq 0$ on wL_1 . This implies $\phi \neq 0$ is a linear functional on wL_1 .

We now give a lemma about linear functionals on wL_1 which is actually due to J. Kupka and T. Peck (see [7, 2.20]).

LEMMA 2.3. For a ultrafilter \mathcal{U} defined as above, let $f \in wL_{\hat{1}}$ be a nonnegative function with $||f||_{\mathcal{U}} = 1$. Then for any $g \in wL_{\hat{1}}$, disjointly supported from f, we can find $\phi \in wL_{\hat{1}}^*$ such that $||\phi|| = 1$, $\phi(f) = 1$ and $\phi(g) = 0$.

Let $(f_n)_{n=1}^{\infty}$ be a sequence of nonnegative elements in wL_1 with $||f_n||_{wL_1} = 1$, for all $n = 1, 2, 3, \cdots$ and such that the f_n have pairwise disjoint supports. Applying the inductive argument to Lemma 2.3, for each f_n , we can find a linear functional ϕ_n on wL_1 such that $\phi_n(f_n) = 1$, $||\phi_n|| = 1$ and $\phi_n(f_m) = 0$ if $n \neq m$.

LEMMA 2.4. Let $(f_n)_{n=1}^{\infty}$ be a sequence of nonnegative elements in $wL_{\hat{1}}$ such that the f_n have pairwise disjoint supports with $||f_n||_{wL_{\hat{1}}} = 1$, for all $n = 1, 2, \cdots$ and let $(\phi_n)_{n=1}^{\infty}$ be a sequence of linear functionals on $wL_{\hat{1}}$ selected as above. Then for any $f \in wL_{\hat{1}}$, we have $\sum_{n=1}^{\infty} |\phi_n(f)| \leq ||f||_{wL_{\hat{1}}}$.

Proof. For an arbitrary element $f \in wL_1$, the number $\phi_n(f)$ is the limit of a subnet of the sequence $\{I_{\mathcal{U}}(\chi_{E_{n,k}} \cdot f)\}$ where $(E_{n,k})_{k=1}^{\infty}$ is a decreasing sequence of subsets of $E_n = supp(f_n)$, and f_n is bounded on $E_{n,k}^c$ for all k (see [7, 2.20]). Fix $n \neq m$, let $(E_{n,k})_{k=1}^{\infty}$ be the decreasing sequence of measurable sets for f_n and $(E_{m,k})_{k=1}^{\infty}$ the corresponding sequence for f_m . Let $r = sgnI_{\mathcal{U}}(\chi_{E_{n,k}} \cdot f)$, $s = sgnI_{\mathcal{U}}(\chi_{E_{m,k}} \cdot f)$. Put $m = r\chi_{E_{n,k}} + s\chi_{E_{m,k}}$ so that $||m||_{\infty} = 1$. By Theorem 2.1 and Lemma 2.3, we can identify $T_{\mathcal{U}}(m) = \hat{m}$ as a linear functional on wL_1 . Then we have

$$\widehat{m}(f) = |I_{\mathcal{U}}(\chi_{E_{n,k}} \cdot f)| + |I_{\mathcal{U}}(\chi_{E_{m,k}} \cdot f)|$$

$$= I_{\mathcal{U}}(m \cdot f)$$

$$\leq ||m||_{\infty} ||f||_{\mathcal{U}} \quad \text{since } ||m||_{\infty} = 1$$

$$= ||f||_{\mathcal{U}} \quad \text{by (2.2)}$$

$$\leq ||f||_{wL_{\hat{1}}}.$$

By the additive rule for nets [5, Lemma 6, p28], we can say that in the limit

$$|\phi_n(f)| + |\phi_m(f)| \le ||f||_{\mathcal{U}}$$
 by (2.2)
 $\le ||f||_{wL_1}.$

To show $\sum_{n=1}^{\infty} |\phi_n(f)| \leq ||f||_{wL_1}$, it suffices to show that for any $N \in \mathbf{N}$, $\sum_{n=1}^{N} |\phi_n(f)| \leq ||f||_{wL_1}$. For $n = 1, 2, \cdots$, let $(E_{n,k})_{k=1}^{\infty}$ be the decreasing sequence of measurable sets for f_n and $E_n = supp(f_n)$. Let $r_n = sgn(\chi_{E_{n,k}} \cdot f)$. Put $m = \sum_{n=1}^{N} r_n \chi_{E_{n,k}}$. Then we have $||m||_{\infty} = 1$. By the same argument as above, one can get

$$\widehat{m}(f) = \sum_{n=1}^{N} |I_{\mathcal{U}}(\chi_{E_{n,k}} \cdot f)|$$

= $I_{\mathcal{U}}(m \cdot f)$
 $\leq ||m||_{\infty} ||f||_{\mathcal{U}}$ since $||m||_{\infty} = 1$ and by (2.2)
 $\leq ||f||_{wL_{\hat{1}}}.$

By the additive rule for nets [5, Lemma 6, p28], we can say that in the limit

$$\sum_{n=1}^{N} |\phi_n(f)| \le ||f||_{\mathcal{U}} \quad \text{since } ||m||_{\infty} = 1$$
$$\le ||f||_{wL_i}.$$

We can therefore say that $\sum_{n=1}^{\infty} |\phi_n(f)| \le ||f||_{wL_1}$. This proves the lemma.

We now need to recall the T. Peck and M. Talagrand's theorem. In [10, Theorem 1], one can see the following theorem; Let Ω be a set and $\Omega_{i,n}$, $n \geq 0, 1 \leq i \leq 2^n$ be a set of Ω such that $\Omega_{1,0} = \Omega, \Omega_{i,n} \cap \Omega_{j,n} = \emptyset$, if $i \neq j$ and $\Omega_{i,n} = \Omega_{2i-1,n+1} \cup \Omega_{2i,n+1}$. Let $\chi_{i,n}$ be the characteristic function of $\Omega_{i,n}, n > 0, 1 \leq i \leq 2^n$ and let Y be the linear span of the functions $\chi_{i,n},$ $n > 0, 1 \leq i \leq 2^n$.

THEOREM 2.5. [10, T. Peck and M. Talagrand] Let X be the completion of Y under some lattice norm on Y where Y is given the usual pointwise order. Then there is a lattice isometry of X into $wL_{\hat{1}}$.

552

T. Peck and M. Talagrand constructed for all natural number $n, 1 \leq i \leq 2^n$ under lattice isometry $T, T\chi_{i,n} = f_{i,n}$, where

$$f_{i,n} = \sum_{m \ge n} \sum_{j=1}^{2^{m-n}} e_{2^{m-n}(i-1)+j,m}$$

and for $x \in [v_{i,n}, w_{i,n}]$, each $e_{i,n}(x) = \frac{b_{i,n}}{x - u_{i,n}}$ is a $\frac{1}{x}$ -like function. Note that $f_{i,n}$ are all nonnegative and pairwise disjointly supported in wL_1 and $f_{i,n} = f_{2i,n+1} + f_{2i+1,n+1}$, for all n, and $1 \leq i \leq 2^n$ (see [10, proof of Theorem 1]).

THEOREM 2.6. Let E be a separable reflexive Banach lattice and T: $E \longrightarrow wL_{\hat{1}}$ be the lattice isometry given in Theorem 2.5. Then the range of T is a complemented sublattice of $wL_{\hat{1}}$.

Proof. Let E be a reflexive Banach lattice. Then TE is also a reflexive sublattice of wL_1 . This implies that the unit ball B_{TE} is weakly compact. Since every separable reflexive Banach lattice has an order continuous norm, E has an order continuous norm. Hence we can apply the construction of T in Theorem 2.5. Let $(\chi_{i,n})_{i=1}^{2^n}$ be the subset of E defined in Theorem 2.5. Without loss of generality, one can assume $\|\chi_{i,n}\| = 1$ for all $1 \leq i \leq 2^n$ by normalizing. Then we have $\overline{span}(\chi_{i,n})_{i=1}^{2^n} \subset E$. Define $T\chi_{i,n} = f_{i,n}$, then $\overline{span}(f_{i,n}) \simeq \overline{span}(\chi_{i,n})$. Since $\{\chi_{i,n}\}$ form a dense subset of E, $\{f_{i,n}\}$ form a dense subset of TE. Moreover, for fixed n, the $f_{i,n}$ are pairwise disjointly supported nonnegative elements in TE with $\|f_{i,n}\|_{wL_1} =$ 1. Hence by Lemma 2.3, we can find linear functionals $\phi_{i,n}$ on wL_1 such that $\phi_{i,n}(f_{j,n}) = \delta_{i,j}$ and $\|\phi_{i,n}\| = 1$, for all $i = 1, 2, \cdots$. For each n, let $B_n = \{f_{i,n}\}_{i=1}^{2^n}$ and define $P_{B_n}: wL_1 \longrightarrow \overline{span}(f_{i,n})_{i=1}^{2^n} \subset TE$ by

(2.3)
$$P_{B_n}(f) = \sum_{i=1}^{2^n} \phi_{i,n}(f) f_{i,n}.$$

Since, for all $f \in wL_{\hat{1}}$, by Lemma 2.4 and $||f_{i,n}||_{wL_{\hat{1}}} = 1$

$$\|P_{B_n}(f)\|_{wL_1} = \|\sum_{i=1}^{2^n} \phi_{i,n}(f)f_{i,n}\|_{wL_1}$$

(2.4)
$$\leq \sum_{i=1}^{2^{n}} |\phi_{i,n}(f)| \|f_{i,n}\|_{wL_{\hat{1}}}$$
$$\leq \sum_{i=1}^{2^{n}} |\phi_{i,n}(f)| \leq \|f\|_{wL_{\hat{1}}}$$

This implies $||P_{B_n}|| \leq 1$, and P_{B_n} is a well defined linear map. Moreover, $f_{j,n} \in TE \subset wL_1^2$,

(2.5)

$$P_{B_n}(f_{j,n}) = \sum_{i=1}^{2^n} \phi_{i,n}(f_{j,n}) f_{i,n}$$

$$= \phi_{j,n}(f_{j,n}) f_{j,n} = f_{j,n}$$

Hence $||P_{B_n}(f_{j,n})||_{wL_1} = ||f_{j,n}||_{wL_1} = 1$, and $P_{B_n}^2 = P_{B_n}$. Hence P_{B_n} is a projection wL_1 onto $\overline{span}(f_{i,n})_{i=1}^{2^n} \subset TE$. From this, we want to find a projection P from wL_1 onto TE. We define a partial order on $\{B_n\}_{n=1}^{\infty}$ by $B_n \prec B_m$ if $\overline{span}(f_{i,n}) \subset \overline{span}(f_{i,m})$. Then for each B_n , we have $||P_{B_n}(f)||_{wL_1} \leq ||f||_{wL_1}$, for all $f \in wL_1$ by (2.4). Hence the vector $P_{B_n}(f)$ belongs to $\{g \in TE : ||g||_{wL_1} \leq ||f||_{wL_1}\}$ which is a weakly compact subset in TE. Now consider the following product space;

(2.6)
$$\prod_{f \in wL_{\hat{1}}} \{ g \in TE : \|g\|_{wL_{\hat{1}}} \le \|f\|_{wL_{\hat{1}}} \}.$$

Note that by Tychonoff's theorem, $\prod_{f \in wL_1} \{g \in TE : ||g||_{wL_1} \leq ||f||_{wL_1}\}$ is compact for the weak topology. Hence the net $\{P_{B_n}\}$ of projections from wL_1 to TE has a subnet which converges to some limit point P, in the topology of pointwise convergence on wL_1 , taking the weak topology on TE. Let $\{P_{B_{n_\alpha}}\}$ be a subnet of $\{P_{B_n}\}$ which converges to P. Then we have the weak limit $P(f) = \lim_{\alpha} P_{B_{n_\alpha}}(f)$, for all $f \in wL_1$. Since each P_{B_n} is contractive, positive, and norm one, P is contractive, positive, and norm one.

Finally, we need to show that for all $f \in TE$, P(f) = f. Since $(f_{i,n})$ are dense, given $\epsilon > 0$ one can find $B_n = \{f_{i,n}\}$ such that $\|\sum_{i=1}^{2^n} a_i f_{i,n} - f\|_{wL_1} < \epsilon/2$ for some $(a_i)_{i=1}^{2^n}$. Let $g = \sum_{i=1}^{2^n} a_i f_{i,n}$. Then since $\|P(g) - g\|_{wL_1} = 0$, we can have

554

$$\begin{aligned} \|P(f) - f\|_{wL_{\hat{1}}} &\leq \|P(f) - P(g)\|_{wL_{\hat{1}}} + \|P(g) - g\|_{wL_{\hat{1}}} + \|g - f\|_{wL_{\hat{1}}} \\ &\leq \|P(f - g)\|_{wL_{\hat{1}}} + \|g - f\|_{wL_{\hat{1}}} \\ &\leq \|f - g\|_{wL_{\hat{1}}} + \|g - f\|_{wL_{\hat{1}}} \\ &< \epsilon. \end{aligned}$$

Hence P(f) = f for all $f \in TE$. Therefore P is a positive norm one projection from $wL_{\hat{1}}$ onto TE. This proves the theorem.

Now for $(1 , we can have the <math>L_p(\mu)$ space structure which is lattice isometric to a complemented in $wL_{\hat{1}}$.

COROLLARY 2.7. For $1 , the Banach envelope of <math>WeakL_1$ contains a complemented sublattice that is isometrically isomorphic to $L_p(\Omega, \Sigma, \mu)$ where μ is a separable probability measure.

Proof. For $1 , <math>L_p(\mu)$ is a reflexive separable Banach lattice. By Theorem 2.5, there exists a lattice isometry T from $L_p(\mu)$ into $wL_{\hat{1}}$. Then $TL_p(\mu)$ is a separable reflexive Banach sublattice of the Banach envelope of $WeakL^1$. Hence by Theorem 2.6, one can find a projection P from $wL_{\hat{1}}$ onto $TL_p(\mu)$. Since $L_p(\mu)$ is lattice isometric to $TL_p(\mu)$, $TL_p(\mu)$ is the desired sublattice. This proves the corollary.

COROLLARY 2.8. Let E be a separable reflexive Banach lattice. Then any ideal I of E is lattice isometric to a complemented sublattice of $wL_{\hat{1}}$.

Proof. Let $T: E \longrightarrow wL_{\hat{1}}$ be the isometric order isomorphism of Theorem 2.5. Then by Theorem 2.6, TE is complemented in $wL_{\hat{1}}$. Let $P: wL_{\hat{1}} \longrightarrow TE$ be a projection and I be an any ideal of E. Then TI is an ideal of TE. Since E is order continuous, TE is also an order continuous sublattice of $wL_{\hat{1}}$. Hence by Ando's theorem [8, 1.a.11], TI is the range of a positive projection from TE. Let $P_1: TE \longrightarrow TI$ be a such projection. Then $Q = P_1 \circ P$ is the desired projection from $wL_{\hat{1}}$ onto TE. This proves the corollary.

References

- [1] M. Cwikel and Y. Sagher, $L(p, \infty)^*$, Indiana Uni. Math. J. **21** (1972), 782-786.
- [2] M. Cwikel, On the conjugates of some function spaces, Studia Math. 45 (1973), 49-55.
- [3] M. Cwikel and C. Fefferman, Maximal seminorm on WeakL¹, Studia Math. 69 (1980), 149-154.
- [4] M. Cwikel and C. Fefferman, The canonical seminorm on WeakL¹, Studia Math. 78 (1984), 275-278.
- [5] N. Dunford and J. T. Schwartz, Linear Operator I : General Theory. Pure and Applied Mathematics, New York: Interscience VII, 1967.
- [6] J. Kang, Banach subspaces and envelope norm of $wL_{\hat{1}}$, Bull. Korean. Math. Soc. **35** (1998), 409-420.
- [7] J. Kupka and T. Peck, The L₁-structure of WeakL¹, Math. Ann. 269 (1984), 235-262.
- [8] Lindenstrauss and Tzafriri, Classical Banach Spaces II, Springer-Verlag, New York, 1974.
- [9] H. P. Lotz and T. Peck, Sublattices of the Banach envelope of WeakL¹, Proc. Amer. Math. Soc. 126 (1998), 75-84.
- [10] T. Peck and M. Talagrand, Banach sublattices of WeakL¹, Israel. J. Math. 59 (1987), 257-271.

*

DEPARTMENT OF MATHEMATICS KOREA MILITARY ACADEMY SEOUL 139-799, REPUBLIC OF KOREA

E-mail: jkang@kma.ac.kr